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ABSTRACT

From the quantum point of view, black holes are unstable and emit so-
called Hawking radiation. Specifically, the Myers-Perry black holes are
generalized rotating Kerr black holes in higher-dimensions, popular in
both Kaluza-Klein and braneworld scenarios, which might in principle
be detected through their Hawking radiation. One specific black hole
characteristic is the greybody factor, defined in terms of the transmis-
sion probability of Hawking radiation back-scattered from the black hole
gravitational potential barrier. In this paper, some rigorous bounds on
the greybody factor for spin-zero Hawking radiation emitted in the zero-
angular-momentum mode from the Myers-Perry black holes are calcu-
lated. This calculation serves as a template for other angular momentum
modes.
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1. Introduction

Classically anything and everything, even light, which enters a black hole
cannot escape. As a consequence, no one can (directly) see the black hole.
However from the quantum point of view, black holes are unstable and emit
so-called Hawking radiation, see ref. Hawking (1975). When Hawking radia-
tion propagates in the black hole spacetime, it is modified by the curvature of
spacetime resulting from that black hole. In particular, when Hawking radia-
tion is back scattered from the black hole gravitational potential barrier, only
the transmitted radiation can be observed from spatial infinity. This modified
Hawking radiation, therefore, can be thought of as greybody radiation. The
quantity known as the greybody factor is defined in terms of the transmission
probability.

In this paper some rigorous bounds are calculated for the greybody factors
for spin-zero Hawking radiation, emitted in the zero-angular-momentum mode
from Myers-Perry black holes.

2. Myers-Perry Black Holes

The Myers-Perry black holes are the generalization of four-dimensional Kerr
black holes to (4 + n) dimensions. The (4 + n)-dimensional Myers-Perry black
holes can be described by the (4 + n)-dimensional Myers-Perry metric (Myers
and Perry, 1986, Emparan and Reall, 2008)

ds2 = −dt2+
Σ

∆
dr2+Σdθ2+(r2+a2) sin2 θdφ2+

µ

rn−1Σ
(dt−a sin2 θdφ)2+r2 cos2 θdΩ2

n,

(1)
where

∆ = r2 + a2 − µ

rn−1
,Σ = r2 + a2 cos2 θ, (2)

and dΩ2
n is the metric on n-sphere which is given by

dΩ2
n = dθ21 + sin2 θ1dθ

2
2 + sin2 θ1 sin2 θ2dθ

2
3 + . . .+

(
n−1∏
i=1

sin2 θi

)
dθ2n. (3)

Here µ is a free parameter that determines the mass and angular momentum
of the black hole. In particular, the mass and angular momentum of the black
hole are defined by

MBH =
(n+ 2)An+2

16πG
µ and J =

2a

n+ 2
MBH, (4)
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where An+2 is the area of an (n+ 2)-dimensional unit sphere which is given by

An+2 =
2π(n+3)/2

Γ[(n+ 3)/2]
. (5)

The event horizon is located at rH which can be found from ∆(rH) = 0. We
are interested in spin zero (scalar field) Hawking radiation emitted from Myers-
Perry black holes. The equation of motion for scalar fields on the Myers-Perry
black hole background takes the form

∂µ
(√
−ggµν∂νΦ

)
= 0. (6)

By separation of variables,

Φ(t, r, θ, φ, θ1, . . . , θn) = e−iωteimφR̃j`m(r)S`m(θ)Yjn(θ1, . . . , θn), (7)

the radial equation is given by (Boonserm et al., 2014a)[
d2

dr2∗
− Uj`m(r)

]
Rj`m(r) = 0. (8)

Here r∗ is the tortoise coordinate given by

dr∗ =
r2 + a2

∆(r)
dr. (9)

This can explicitly be expressed as

r∗ =

∫ r

rH

r2 + a2

∆(r)
dr ∼ An ln(r − rH) +Bn(r). (10)

The quantity Uj`m(r) is the Teukolsky potential given by

Uj`m(r) =
∆(r)

(r2 + a2)
2

[
λj`m +

j(j + n− 1)a2

r2
+
n(n− 2)∆(r)

4r2
+
n∆′(r)

2r

− 3r2∆(r)

(r2 + a2)
2 +

(r∆(r))′

r2 + a2

]
−
(
ω − ma

r2 + a2

)2

. (11)

Here λj`m is the separation constant. In this work, we are interested in the
zero-angular-momentum mode (m = 0). Therefore, the Teukolsky potential
becomes

Uj`,m=0(r) =
∆(r)

(r2 + a2)
2

[
λj`,m=0 +

j(j + n− 1)a2

r2
+
n(n− 2)∆(r)

4r2

+
n∆′(r)

2r
− 3r2∆(r)

(r2 + a2)
2 +

(r∆(r))′

r2 + a2

]
− ω2. (12)
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We can rewrite the Teukolsky potential as

Uj`,m=0(r) = Vj`,m=0(r)− ω2, (13)

where

Vj`,m=0(r) =
∆(r)

(r2 + a2)
2

[
λj`,m=0 +

j(j + n− 1)a2

r2
+
n(n− 2)∆(r)

4r2

+
n∆′(r)

2r
− 3r2∆(r)

(r2 + a2)
2 +

(r∆(r))′

r2 + a2

]
. (14)

Figures 1 and 2 shows the potential Vj`,m=0(r) in five (n = 1) and six (n = 2)
dimensions.
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Figure 1: The Myers-Perry potential for n = 1.
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Figure 2: The Myers-Perry potential for n = 2.

3. Rigorous Bounds on Greybody Factors

In general, the exact greybody factors are impossible to obtain even for
the Schwarzschild black hole, which is by far the simplest case. Thus, it is of
interest to develop new methods in calculating the greybody factors. One of
them is to place some rigorous bounds on the greybody factors. The relevant
bounds were first developed in Visser (1999). They were further developed in
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Boonserm and Visser (2008a, 2009), Boonserm (2009), Boonserm and Visser
(2010a,b) These bounds have been specifically applied to black hole systems
(Boonserm and Visser, 2008b, Ngampitipan and Boonserm, 2013a,b, Boonserm
et al., 2013, 2014b). General and robust bounds on the greybody factors are
given by (Visser, 1999, Boonserm and Visser, 2008a, 2009)

Tj`m ≥ sech2
(∫ ∞
−∞

ϑdr∗

)
, (15)

where

ϑ =

√
[h′(r∗)]2 + [Uj`m(r∗) + h2(r∗)]

2

2h(r∗)
. (16)

and h(r∗) is any positive function. We choose h(r∗) = ω and consider the
m = 0 case. Then,

T ≥ sech2
[

1

2ω

∫ ∞
rH

∣∣∣∣ 1

r2 + a2

{
λj`,m=0 +

j(j + n− 1)a2

r2
+
n(n− 2)∆(r)

4r2

+
n∆′(r)

2r
− 3r2∆(r)

(r2 + a2)
2 +

(r∆(r))′

r2 + a2

}∣∣∣∣∣ dr
]
. (17)

We can show that the argument of the absolute value is positive for r > rH.
Thus, we can write

T ≥ sech2
[

1

2ω

∫ ∞
rH

1

r2 + a2

{
λj`,m=0 +

j(j + n− 1)a2

r2
+
n(n− 2)∆(r)

4r2

+
n∆′(r)

2r
− 3r2∆(r)

(r2 + a2)
2 +

(r∆(r))′

r2 + a2

}
dr

]
. (18)

Performing the first integral, we obtain∫ ∞
rH

λj`,m=0

r2 + a2
dr =

λj`,m=0

a
arctan

r

a

∣∣∣∣∞
rH

=
λj`,m=0

a
arctan

a

rH
. (19)

By integrating by parts, we can show that∫ ∞
rH

1

r2 + a2

[
− 3r2∆(r)

(r2 + a2)
2 +

(r∆(r))′

r2 + a2

]
dr =

∫ ∞
rH

r2∆(r)

(r2 + a2)
3 dr. (20)

This integral can be explicitly performed and gives∫ ∞
rH

r2∆(r)

(r2 + a2)
3 dr =

n

8rH
−
n(n− 2)

(
r2H + a2

)
8(n+ 2)r3H

2F1

(
1,
n+ 2

2
,
n+ 4

2
,− a

2

r2H

)
− a2

4rH (r2H + a2)
+

1

2a
arctan

a

rH
. (21)
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Here 2F1 (z1, z2, z3, z4) is the hypergeometric function. The j-dependent inte-
gral yields∫ ∞

rH

j(j + n− 1)a2

r2 (r2 + a2)
dr =

j(j + n− 1)

rH
− j(j + n− 1)

a
arctan

a

rH
. (22)

Calculating the n-dependent integral, we obtain∫ ∞
rH

1

r2 + a2

[
n(n− 2)∆(r)

4r2
+
n∆′(r)

2r

]
dr =

n2
(
r2H + a2

)
4(n+ 2)r3H

2F1

(
1,
n+ 2

2
,
n+ 4

2
,− a

2

r2H

)
+
n(n− 2)

4rH
+
n

a
arctan

a

rH
. (23)

Collecting all the results, we obtain

Tj`,m=0 ≥ sech2
∣∣∣∣ 1

2ωrH
Ij`,m=0

∣∣∣∣ . (24)

Here

Ij`,m=0 =
n(2n− 3)

8
+ j(j + n− 1) +

n
(
r2H + a2

)
8r2H

2F1

(
1,
n+ 2

2
,
n+ 4

2
,− a

2

r2H

)
+

a2

4 (r2H + a2)
+

[
2n+ 1

2
− j(j + n− 1) + λj`,m=0

]
rH
a

arctan
a

rH
.(25)

In the limit a→ 0, n = 0 and j = 0, we obtain

lim
a→0

Ij=0,`,m=0 = lim
a→0

[
− a2

4 (r2H + a2)
+

(
1

2
+ λj=0,`,m=0

)
rH
a

arctan
a

rH

]
=

1

2
+λj=0,`,m=0.

(26)
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Figure 3: The bounds on the greybody factors as a function of ω for n = 1.

Figures 3 and 4 show the bounds on the greybody factors as a function of ω
in five (n = 1) and six (n = 2) dimensions, respectively. Figures 5 and 6 show
the bounds on the greybody factors as a function of the black hole angular
momentum in five (n = 1) and six (n = 2) dimensions, respectively.
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Figure 4: The bounds on the greybody factors as a function of ω for n = 2.
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Figure 5: The bounds on the greybody factors as a function of the black hole angular momentum
for n = 1.
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Figure 6: The bounds on the greybody factors as a function of the black hole angular momentum
for n = 2.

4. Conclusion

In this paper, we have obtained rigorous bounds on the greybody factors
for spin-zero Hawking radiation emitted in the zero-angular-momentum mode
from the Myers-Perry black holes. Qualitatively, the bounds seem to decrease
in higher dimensions. In five dimensions corresponding to n = 1, the bounds
decrease when increasing the black hole angular momentum. In six dimensions
corresponding to n = 2, the bounds increase to reach the maximum and start
to decrease when increasing the black hole angular momentum.
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